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Abstract. We study the stationary probability density of a Brownian particle in a potential with a single-
well subject to the purely additive thermal and dichotomous noise sources. We find situations where
bimodality of stationary densities emerges due to presence of dichotomous noise. The solutions are con-
structed using stochastic dynamics (Langevin equation) or by discretization of the corresponding Fokker-
Planck equations. We find that in models with both noises being additive the potential has to grow faster
than |x| in order to obtain bimodality. For potentials ∝|x| stationary solutions are always of the double
exponential form.

PACS. 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 05.40.-a Fluctuation phe-
nomena, random processes, noise, and Brownian motion – 02.50.-r Probability theory, stochastic processes,
and statistics – 05.40.Ca Noise

1 Introduction

The stationary probability distribution function (PDF) is
one of the most important characteristics of stochastic sys-
tems. Its shape results from the joint effect of acting deter-
ministic forces and the dispersion created by the thermal
noise. If the forces are given by a potential, the PDF usu-
ally possesses a Boltzmann-like structure where locations
with vanishing forces correspond to the extrema of the
PDF. Additive noise simply broadens the peaks around
the maxima of the PDF arising near stable situations of
the deterministic systems [1,2].

This correspondence is lost for multiplicative noise
where the shape of a stationary PDF can be significantly
affected by random changes of the model’s parameters [3].
Likewise, colored Gaussian noise with larger correlation
times modifies the stationary PDFs and the relation be-
tween the deterministic force fields and stationary PDFs
becomes case sensitive [4]. Furthermore, the temporal
modulations of systems parameters together with thermal
noise can significantly improve the system’s properties as
shown in many models (see [5,6] and references therein).
Thus, a Markovian dichotomous modulation of the sys-
tems parameters can produce bimodal stationary densi-
ties for single-well potentials in the absence of thermal
noises [3,7,8].
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We intend to study this problem for additive dichoto-
mous noise and thermal noise in more detail. We assume
the overdamped one-dimensional Brownian motion in po-
tential force fields with a single stable fixed point and
driven by the Markovian dichotomous noise

ẋ(t) = −V ′(x) +
√

2Tξ(t) + η(t). (1)

As it will be outlined, this simple system is able to pro-
duce stationary states of a bimodal shape. Thus a particle
moving in single-well potentials and subject to dichoto-
mous and thermal noises is a sufficient theoretical setup
for emergence of bimodality of stationary states.

For simplicity let us first discuss qualitatively some
limits of the stationary density of a linear model with ad-
ditive Gaussian noise and dichotomous driving. In case
without driving the potential is parabolic and the station-
ary density is Gaussian. Taking adiabatically slow switch-
ings η(t) gives a stationary density that is the sum of two
Gaussians with the maxima shifted by the values of the
driving. Obviously, in this situation we expect bimodality
if the amplitudes of the dichotomous driving are larger
than the width of the Gaussians which is defined by the
value of T . Another limit can be considered as well. Let
T → 0. The system is subject only to the dichotomous
perturbations. In such a situation, on the one hand, a
particle ballistically rolls down to the nearest minimum
of the potential, which could be reached in the relax-
ation time τr. On the other hand, the potential is being
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switched between the two configurations with the charac-
teristic switching time τs. If the potential can switch be-
tween two distinct configurations and τr � τs, one expects
to observe bimodal stationary states, because the particle
spends most of the time within the potential minima. The
next limit is a fast switching process, γ → ∞, for which
the correlation time of the dichotomous process τc → 0
(see below for more details) and the dichotomous process
can be replaced by the Gaussian white noise [9,10]. In such
a situation, the stationary distribution is always Gaussian
because the system relaxes to the average minimum of the
potential and, in comparison to the case without the di-
chotomous noise, dispersion around the single maximum
is larger.

In the following sections we will use numeric and ana-
lytic techniques to derive conditions for a bimodal station-
ary PDF. Our starting point is a potential with a single-
well. We will look for conditions under which emerges the
stationary density with a bimodal shape, i.e., with two
maxima. The simulations of Langevin equation provide
a precise description of motion of a single particle [11].
After averaging over realizations of the process it will be
applied in the search for bimodality. The model can be
as well associated with a system of two coupled Fokker-
Planck equations [3] that describes evolution of the prob-
ability density of the process governed by the considered
Langevin equation (1). We will use methods of stochas-
tic dynamics and discretization techniques to solve these
equations numerically.

2 Model

A dichotomous noise [3,12–14] η(t) takes two values. This
type of noise is frequently used for modeling of various
phenomena in biology [15], physics [16–18] and chem-
istry [6,19–24]. States of the dichotomous process can be
associated with various level of external stimuli, tempera-
ture, presence or absence of some external perturbations.
Furthermore, the dichotomous process can be used [16,
25] for coupling dynamics of various models between two
configurations characterized by distinct values of param-
eters. Examples of such models include resonant activa-
tion [16,25] and ratcheting devices [6,17,18,26].

We assume a system with a variable x(t) which is de-
scribed by the Langevin equation (1). Therein ξ(t) repre-
sents thermal fluctuations which are given by the white
Gaussian process with 〈ξ(t)ξ(s)〉 = δ(t − s) [27]. The η(t)
stands for the Markovian dichotomous noise [3] taking one
of two possible values ∆±. γ↓↑ denote transitions rates in
a small time interval between the two noise states ∆±.
The Markovian dichotomous process η(t) remains con-
stant, i.e., η(t) = ∆±, for the exponentially distributed
time τ , i.e., P (τ) ∝ exp(−γ↓↑τ). Therefore, the most nat-
ural method of generation of the dichotomous process is
based on generation of waiting times according to the ex-
ponential waiting time distribution [28,29].

In the model, both noises ξ(t) and η(t) are assumed to
be statistically independent and additive. The Langevin
equation (1) describes evolution of a single realization of

the stochastic process {x(t)} from which further statis-
tics of the process can be calculated. Equation (1) corre-
sponds to the following set of two coupled Fokker-Planck
equations [30]

∂P±(x, t|x0, t0)
∂t

=
[

∂

∂x
V ′
±(x) + T

∂2

∂x2

]
P±(x, t|x0, t0)

∓ γ↓P±(x, t|x0, t0) ± γ↑P∓(x, t|x0, t0). (2)

P±(x, t|x0, t0) is a conditional probability of finding a par-
ticle (trajectory) at time t in the vicinity of the point
x under the condition that it has started its motion at
t0 from x0 while the dichotomous noise takes value ∆±.
V ′
±(x) = V ′(x) − ∆±, i.e., V±(x) = V (x) − ∆±x, where

V (x) is a single-well potential, i.e., in our studies the
parabolic potential well V (x) = x2/2. Furthermore, we
introduce P (x, t|x0, t0) = P+(x, t|x0, t0) + P−(x, t|x0, t0)
and in the stationary limit t− t0 → ∞ the stationary den-
sity P (x) = P+(x) + P−(x). By altering the dichotomous
noise parameters ∆± and γ↑↓ it is possible to modify the
shape of stationary distributions arising from the model
described by equations (1) and (2).

3 Methods of solution and results

The study of the probability densities can be performed
by simulation of equation (1) [31] or discretization of equa-
tion (2).

Simulations of the Langevin equation are based on
the Euler-Mayura integration scheme [31] of equation (1).
This method allows inspection of time dependent and sta-
tionary probability densities of the studied system. Esti-
mators of stationary probability densities are extracted
from the ensemble of N = 106 trajectories of given length
Tmax = 5 or Tmax = 10. The length of simulation has
been adjusted experimentally to guarantee that for Tmax

a stationary regime is reached.
The solution of the Fokker-Planck equation [30] can

be constructed by discretization of equation (2), which
converts the partial differential equation to the discrete
Markov chain. By using this discrete Markov chain it is
possible to inspect the temporal and stationary behavior
of the system described by equation (1).

For the system described by equations (1) and (2) sta-
tionary solutions can be easily obtained in the absence of
the dichotomous noise (∆± = 0) [1]

P (x) ∝ exp
[
−V (x)

T

]
. (3)

As well as in the absence of the thermal noise
(T = 0) [9,3,32]

P (x) ∝ 1

∆2 − [V ′(x)]2
exp

⎡
⎣−2γ

x∫
V ′(x)

∆2 − [V ′(x)]2
dx

⎤
⎦ .

(4)
The support of distribution (4) is limited to x such that
∆2− [V ′(x)]2 > 0. Furthermore, for the sake of simplicity,
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it has been assumed that the dichotomous noise is sym-
metric, i.e., γ↓↑ = γ and ∆± = ±∆.

In this symmetric case with T > 0 the stationary den-
sity P (x) fulfills the following differential equation

0 = P ′′′(x)T 2 + P ′′(x)2TV ′(x)
+P ′(x)

[
3TV ′′(x) + [V ′(x)]2 − ∆2 − 2γT

]
+P (x) [2V ′(x)V ′′(x) + TV ′′′(x) − 2γV ′(x)]. (5)

The trivial solution of equation (5) is P (x) ≡ 0. In gen-
eral, any non trivial solution of equation (5) depends on
three unknown constants, which can be determined by the
boundary condition at infinity (T > 0)

|x| → ∞ : P (x) → 0, P ′(x) → 0, (6)

and normalization of P±(x) and consequently of P (x)

∫ ∞

−∞
P−(x)dx =

γ↓
γ↓ + γ↑

= 1 −
∫ ∞

−∞
P+(x)dx. (7)

In the limit of T → 0 solution of equation (5) is
given by equation (4). In the limit γ → 0 equa-
tions (2) decouple and consequently the system evolves
independently in both potentials V±(x) leading to
P (x) = C− exp[−V−(x)/T ] + C+ exp[−V+(x)/T ], where
C± are determined from the initial conditions, e.g. when
P±(x, t|0, 0) = δ(x)/2 then C− = C+ = C and C can be
determined due to normalization of the probability den-
sity. The limit ∆ → 0 in equation (5) cannot be taken,
because it was derived under the assumption that ∆ 
= 0.
The limit ∆ → 0 can be taken in equation (2) leading to
the solution given by equation (3).

In Figure 1 potentials V±(x) = V (x) ∓ ∆x are pre-
sented which we used for study of stationary densities.
We tested numerical methods for the static parabolic po-
tential V (x) = x2/2. Figure 2 presents constructed sta-
tionary states. As it is visible in Figure 2 all considered
methods produced results that are in full agreement with
the theoretical solution P (x) ∝ exp[−V (x)/T ]. Further-
more, from P (x) the effective non equilibrium potential
Veff = − ln[P (x)] was estimated, see right panel of Fig-
ure 2.

3.1 Special case: V(x) = 0

For V (x) = 0 the deterministic force acting on a particle
is −V ′

±(x) = ±∆ and equation (5) takes the form

P ′′′(x)T 2 − P ′(x)(∆2 + 2γT ) =
d

dx
[P ′′(x)T 2 − P (x)(∆2 + 2γT )] = 0. (8)

Equation (8) is equivalent to P ′′(x)T 2−P (x)(∆2+2γT ) =
0 and it has a solution of the form P (x) = C− exp(λ−x)+
C+ exp(λ+x) where λ± = ±

√
∆2 + 2γT/T . Due to the

boundary conditions P (±∞) = 0, both constants C± = 0,
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Fig. 1. V (x) (dotted dashed line), V−(x) = V (x) − ∆−x
(dotted line ) and V+(x) = V (x) − ∆+x (solid line) for
V (x) = 20|x|1.1 with ∆± = ±25 (left panel) and V (x) = x2/2
with ∆± = ±2.5 (right panel). The minima of the |x|1.1 po-
tential are located at x ≈ ±3.59. The minima of the perturbed
parabolic potentials V±(x) are located at ±∆ = ±2.5.
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Fig. 2. Stationary states for the static potential V (x) = x2/2
(left panel) and the corresponding effective potential Veff =
− ln[P (x)] (right panel). Results have been constructed by dis-
cretization method (solid line) and Langevin dynamics (◦).
Simulations parameters: ∆t = 10−3, N = 106, Tmax = 10,
T = 1 and Nbins = 200.

and consequently P (x) ≡ 0, thus a non trivial station-
ary PDF does not exist for V (x) = 0. The exception is
the case of V (x) = 0, T = 0 with γ → ∞ and finite
∆, where an initial condition is persistent. Therefore, for
P±(x, t|x0, 0) = δ(x − x0)/2, the stationary solution is
P (x) = δ(x − x0). For γ → ∞, ∆2 → ∞ in such a way
that ∆2/γ is constant, the dichotomous noise is equivalent
to the Gaussian white noise [9,32]. Thus, the dichotomous
driving acts as a thermal noise and consequently proba-
bility density is Gaussian with dispersion increasing with
time.

The case of V (x) = 0 and T = 0 leads to the Taylor
dispersion model, see [33] and reference therein. In the
asymptotic limit, for t � γ−1 and |x| � ∆ · t with
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P (x, t|0, 0) = δ(x) and ∂xP (x, t|0, 0) = 0

P (x, t|0, 0) ≈ exp(−x2γ/2∆2t)√
2π∆2t/γ

. (9)

In this context it can be mentioned that non trivial sta-
tionary densities, for V (x) = 0 and T > 0, can be found
for a motion of a Brownian particle on a finite interval
restricted by two reflecting boundaries that create a per-
manent box that is shaken by the Markovian dichotomous
noise [34]. For the symmetric dichotomous process and
symmetric location of reflecting boundaries stationary dis-
tributions are also bimodal, with maxima located at the
neighborhood of reflecting boundaries. For γ → ∞, sta-
tionary distributions become uniform [34].

3.2 Special case: V(x) = |x|

For V (x) = |x|, the dichotomous noise changes slopes of
the potential well without moving its minimum, i.e.,

V±(x) = |x| ∓ ∆x =
{

x(1 ∓ ∆) for x � 0
−x(1 ± ∆) for x < 0 , (10)

and consequently minimum of the full potential is lo-
cated at x = 0. Therefore, the dichotomous noise with
V (x) = |x| cannot produce bimodal stationary probabil-
ity densities. Furthermore, to create permanent potential
well it is necessary to consider ∆ < 1, otherwise the poten-
tial switches between two configurations V±(x) for which
stationary states do not exist.

For V (x) = |x|, equation (5) takes the form

P ′′′(x)T 2±P ′′(x)2T +P ′(x)[1−∆2 −2γT ]∓P (x)2γ = 0.
(11)

Upper signs correspond to x > 0, while lower to x < 0.
Due to the symmetry of the dichotomous noise P (x)

is an even function of x, i.e., P (x) = P (−x), therefore we
introduce

P (x) =
3∑

i=1

Ci exp(λi|x|). (12)

The unknown constants Ci are determined by the normal-
ization condition C1/|λ1| + C2/|λ2| + C3/|λ3| = 1/2 and
by the continuity of P±(x) at x = 0. The characteristic
exponents λis obey

λ3T 2 + λ22T + λ[1 − ∆2 − 2γT ]− 2γ = 0. (13)

The characteristic determinant of this third order polyno-
mial is −4T 2∆2 + 8T 2∆4 − 40T 3∆2γ − 4γ2T 4 − 4T 2∆6 −
24T 3∆4γ − 48T 4∆2γ2 − 32T 5γ3. The single positive term
of the discriminant is 8T 2∆4, which is easily compensated
by other negative terms. Thus, the characteristic deter-
minant is always smaller than zero and, consequently, all
roots λi are real.

From Vieta’s formulas it follows that λ1λ2λ3 =
2γ/T 2 > 0 and λ1 + λ2 + λ3 = −2/T < 0. We conclude
that equation (13) has always two negative roots, let’s say
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Fig. 3. In the left panel: the surface f(λ, γ) given by equa-
tion (13). Equation (13) has two negative solutions λ1 and λ2

(λ1 < λ2). For γ → ∞ λ1 tends to −∞, while λ2 tends to
−1/T . For γ → 0 roots of equation (13) tends to −1 ± ∆, i.e.,
they are both negative only for ∆ < 1. In the right panel:
P (x) for V (x) = |x|. Due to the symmetry of P (x), i.e.,
P (x) = P (−x), results for x > 0 are presented only. Please
note the logarithmic scale on the ordinate axis. Other model
parameters ∆ = 4, γ = 1 and T = 1.

λ1, λ2 (λ1 < λ2), for every γ > 0. The third contribution
in equation (12) with nonnegative root λ3 � 0 does not
obey the boundary conditions and we put C3 = 0.

For γ = 0, two negative roots exist if ∆ < 1. With the
equidistributed initial states P±(x, t|0, 0) = δ(x)/2, the
stationary solution is P (x) = C1 exp[−(1 − ∆)|x|/T ] +
C2 exp[−(1 + ∆)|x|/T ], where C1 = C2 = (1 − ∆2)/4T .
For γ = 0 and ∆ � 1, a nontrivial stationary solution
does not exist.

A more interesting case is γ > 0. Then the stationary
solution exists for arbitrary values of ∆ even for ∆ � 1
where states with fixed η(t) are unstable. The two char-
acteristic exponents can be found by use of equation (13).
Requirement of continuity and normalization leads to

C1 =
|λ1λ2|(T |λ2| − 1)

2[|λ2|(T |λ2| − 1) + |λ1|(1 − T |λ1|)] , (14)

C2 =
|λ1λ2|(1 − T |λ1|)

2[|λ2|(T |λ2| − 1) + |λ1|(1 − T |λ1|)] . (15)

In Figure 3 the probability density with V (x) = |x| and
parameters ∆ = 4, γ = 1 and T = 1 is depicted in the
right panel and compared with simulation done by the
discretization of equation (2). For ∆ > 1, the stable sta-
tionary behavior emerges because of the presence of the
dichotomous noise. The dichotomous process switches be-
tween ±∆ forcing the potential to switch between two un-
stable modes, in every mode the particle would reach arbi-
trarily large values of x. Switching between both states of
the potential induces oppositely directed forces after finite
times and, thus, the particle is hindered to reach infinity.
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Fig. 4. Stationary solutions for V (x) = 20|x|1.1 with ∆± =
±25 and corresponding effective non equilibrium potential
Veff = − ln[P (x)] (right panel) with γ = 0.001. Results have
been constructed by the discretization method (solid line)
and by the Langevin dynamics (◦). Simulations parameters:
∆t = 10−3, N = 106, Tmax = 10, T = 1 and Nbins = 200.

The mass of probability is concentrated around x = 0 and
the situation reminds a Pauli trap.

For γ → ∞, λ1 → −∞ while λ2 → −1/T . For the
large absolute value of λ1, lim

λ1→−∞
C1 = 0 and lim

λ1→−∞
C2 =

|λ2|/2, see left panel of Figure 3. For λ1 → −∞, the second
characteristic root λ2 tends to −1/T and, consequently,
C2 → 1/(2T ). Therefore, stationary density tends to its
limiting form P (x) = exp(−|x|/T )/(2T ), which is reached
for γ → ∞. Again, if ∆ is becoming infinitely large as
∆2 ∝ γ, the dichotomous noise becomes white Gaussian
noise and λ2 → −1/(T + ∆2/2γ).

In the case ∆ < 1 a potential well is present in both
states ± ∆. The dichotomous noise only changes the shape
of stationary densities. Therefore, the dichotomous driv-
ing is not necessary to stabilize stationary states of the
inspected model.

3.3 Potential wells of the |x|ν type

Equation (5) can be also considered for potentials of the
type V (x) = a|x|ν (a > 0). In such a situation, the poten-
tial well is present for any values of the dichotomous noise
±∆ under the condition that ν > 1.

We put ν = 1.1 and hence V (x) = 20|x|1.1. The poten-
tial is depicted in the left panel of Figure 1. We adjusted
the value of the prefactor as a = 20 and ∆ = 25 in or-
der to accelerate the decay of stationary densities and to
decrease the domain with remarkable nonvanishing P (x).
Similar shapes of the potential hold for all positive values
of a, ν > 1 and ∆. The minima of the considered potential
are located at x ≈ ±3.59.

In Figures 4–6 sample stationary PDFs are presented.
Due to the dependence of |x| around x ≈ 0 a cusp is
visible. Here, like for the parabolic potential, bimodality
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of stationary states disappears with increasing γ, see be-
low. The presented solutions were constructed by the dis-
cretization technique as well as by the Langevin dynamics.

3.4 Main case: parabolic potential

Figure 7 shows sample trajectories for V (x) = x2/2 with
∆± = ±∆ = ±2.5. The upper panel corresponds to the
situation when a particle is moving in one of the static
potentials V+(x) or V−(x), which is chosen randomly with
equal probabilities. In the middle panel, there is no ther-
mal noise, therefore a particle deterministically rolls down
to the minimum of the potential. When the dichotomous
process changes its state from ±∆ to ∓∆, the location
of the potential minimum changes and consequently the
particle starts to roll down to the new position.

In the presence of the thermal noise and the dichoto-
mous process the motion of a particle is irregular, see bot-
tom panel of Figure 7. The level of the irregularity depends
on the intensity of the thermal fluctuations. Furthermore,
the level of the irregularity can also be affected by the cor-
relation time of the dichotomous noise, i.e., for the small
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Fig. 7. Sample trajectories for various limiting cases of equa-
tion (1) with the parabolic potential: γ↓↑ = 0, T = 1 (top
panel); T = 0 γ↓↑ = 0.8 (middle panel) and γ↓↑ = 0.8,
T = 1 (bottom panel). For ∆± = ±2.5, minima of potentials
V±(x) = x2/2 − ∆±x are located at ±2.5.

correlation time τc the dichotomous process changes its
value more frequently. Transitions between states occur
much more rapidly and consequently the motion of the
particle is attracted by new positions. Hence, the particle
spends a larger fraction of time between minima of the
perturbed potential.

Figures 8 and 9 depict the stationary probability den-
sity P (x) for the symmetric dichotomous noise charac-
terized by ∆ = 2.5 and various switching frequencies γ.
For the parabolic potential V (x) = x2/2, the dichoto-
mous noise shifts positions of full potential, V±(x), minima
to new locations, see right panel of Figure 1, and conse-
quently bimodality of stationary densities can be recorded.
For γ → 0, the stationary density is the average of sta-
tionary densities for both dichotomous noise configura-
tion, P (x) ∝ [exp(−V+(x)) + exp(−V+(x))], see Figure 8.
In the opposite limit, i.e., γ → ∞, the stationary density
corresponds to the average potential [V−(x) + V+(x)]/2 =
V (x) = x2/2, see left panel of Figure 2. With the increas-
ing switching frequency γ the minimum separating the
two maxima of stationary densities becomes shallower and
consequently the bimodal character of stationary densities
disappears, see Figures 8 and 9. For γ = 100, the station-
ary density reaches its asymptotic limit and is the same
as stationary density for the static potential, see left panel
of Figure 2.

3.5 Phase diagram

For a given type of the potential V (x) the shape of the
stationary states depends on three parameters: T, ∆, γ.
On the one hand the bimodality of stationary PDFs is
observed for potentials of the type |x|1+ε (ε > 0). On the
other hand a bimodal shape of stationary solutions can
be diminished or destroyed by alternation of the model’s
parameters T, ∆, γ. Therefore, the natural question is how
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Fig. 8. The stationary solution for V (x) = x2/2 (left panel)
and the corresponding effective non equilibrium potential
Veff = − ln[P (x)] (right panel) with ∆± = ±2.5 and γ = 0.001.
Results have been constructed by the discretization method
(solid line) and by the Langevin dynamics (◦). Simulations
parameters: ∆t = 10−3, N = 106, Tmax = 5, T = 1 and
Nbins = 200.
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Fig. 9. The same as in Figure 8 for γ = 0.1.

the phase diagram of the considered model looks like. In
general, stationary solutions can be constructed numeri-
cally only. Nevertheless, in the simplest cases asymptotic
properties of the phase diagram can be inspected analyt-
ically, see Figure 10. The condition of multimodality is
based on the fact that bimodal stationary solutions for
the parabolic potential well subject to the symmetric di-
chotomous driving have local minima at x = 0.

For γ = 0 (with symmetric initial condition), the sta-
tionary solution is the average of stationary states for both
configurations of the potential V±(x) = V (x) ∓ ∆x. It is
bimodal if

[
∆2 + [V ′(0)]2

]
/T − V ′′(0) > 0. (16)

Consequently, for a parabolic potential the bimodality is
recorded for ∆ >

√
T .
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Fig. 10. The schematic sketch of the phase diagram for the
parabolic potential V (x) = x2/2. In the limiting cases, the
stationary solution is bimodal for ∆ >

√
T and for γ < 1. Ad-

ditional thermal fluctuations broaden the existing stationary
states.

For T = 0 the stationary solution is given by equa-
tion (4) and its support is limited to x such that ∆2 −
[V ′(x)]2 > 0. The solution (4) is bimodal when

V ′(x)[V ′′(x) − γ] (17)

is equal to zero for x = 0 and changes its sign from nega-
tive (−) to positive (+). Therefore, for the parabolic po-
tential the bimodality is recorded for γ < 1.

This results confirm our previous expectations, be-
cause V ′′(0) can be associated with the relaxation time
within the potential well (τr ∝ 1/

√
V ′′(0) = 1), while γ is

related to the switching time of the dichotomous process
(τs ∝ 1/γ).

Finally, for ∆ = 0, the stationary solution of equa-
tion (1) is given by equation (3) and it is always unimodal.
The schematic sketch of the phase diagram is depicted in
Figure 10.

4 Discussion

Multimodal stationary probability density functions can
be observed in various systems. The most natural system
is a double-well potential model. For this double-well po-
tential model maximal probability is constructed around
the minima of the potential and stationary densities are
bimodal. Here we underline that bimodality of station-
ary densities does not need to be caused by a double-well
potential. It can be also produced in single minima poten-
tials. The multimodality could be a consequence of addi-
tional dichotomous fluctuations and noise.

A single minima potential with dichotomous and ther-
mal noises provides a sufficient theoretical and experimen-
tal setup for the observation of bimodal stationary densi-
ties. It is one of the possible frameworks that can explain
the origin of bimodality. The bimodality in this approach
is observed due to the presence of the dichotomous noise
that switches the potential between two distinct configu-
rations. When the minima of the resulting perturbed po-
tentials have different locations, bimodal stationary den-
sities can arise. Therefore, a required potential needs to
be steeper than linear. Thus, potentials of the type |x|1+ε

(ε > 0) are necessary to induce bimodality.

Stationary states can emerge due to the presence of
the dichotomous noise in systems which consist of two
subsystems for which the stationary states do not exist
in each of the two systems taken individually. Namely,
if the dichotomous noise switches the potential between
two of those configurations, e.g. |x| ± 4x, it can produce a
coupled system for which stationary distribution exist. For
the linear potential well, i.e., V (x) = |x|, the stationary
distribution is characterized by two exponents, see right
panel of Figure 3, and exists for γ > 0 and any value of ∆.

Stationary states of stochastic systems driven by di-
chotomous and thermal noises can be constructed by a
direct simulation of the Langevin equation that describes
the system’s dynamics. Further possibility is to use the as-
sociated Fokker-Planck equation, from which the station-
ary density of the system can be obtained. Here, both ap-
proaches were used, leading to an excellent level of agree-
ment between the results obtained in both ways.

In the considered model the emergence of bimodality is
the consequence of the combined action of random and de-
terministic forces. In equation (1) dichotomous noise acts
as a two-state stochastic perturbation that changes the
shape of the potential experienced by the Brownian par-
ticle. Therefore, it is interesting to discuss in some detail
the behavior of a similar system in which the dichotomous
noise is replaced by the deterministic two-state perturba-
tion, i.e. a symmetric periodic square function. On the
one hand, both the periodic square function and the di-
chotomous noise change the shape of the potential. On the
other hand, there are significant differences between both
types of perturbation. These differences are especially vis-
ible for slow two-state perturbations. For the system per-
turbed by the dichotomous noise, at a given time t, the
perturbation can take any of two allowed values. However,
for the system perturbed by the periodic square function,
at given time t the potential is in one configuration. This
configuration can be easily determined on the basis of the
initial condition and parameters of the square function.
Therefore, under the assumption that all the initial con-
ditions are deterministic, for the system perturbed by a
slowly varying square function the probability density is
a periodic function of time [35].

In order to obtain bimodality in the system subject to a
periodic two-state perturbation it is necessary to consider
a special initial condition. The initial condition should be
of the type that introduces a possibility that at a given
time t the periodic perturbation can be in any of two al-
lowed states. For example, the appropriate perturbation
can be of the form f(t) = A× sgn[cos(2πt/TΩ)]× sgn(U),
where U is a random number uniformly distributed over
the interval [−1, 1]. On the contrary, for fast varying two
state perturbations, for both dichotomous and periodic
perturbations, resulting distributions are unimodal.

A natural way to extend the considered model with
additive dichotomous and thermal noises is to replace
the dichotomous process with some process taking more
than two values. To record multimodality it is necessary
to impose additional conditions on V (x) which are the
straightforward extensions of assumptions required for the
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dichotomous noise. Trichotomous [36] or kangaroo pro-
cesses [37,38] can be considered as a possible extension of
the dichotomous noise.
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E. Gudowska-Nowak, P.F. Góra and I.M. Sokolov for fruitful
and inspiring discussions.

References

1. C.W. Gardiner, Handbook of Stochastic Methods for
Physics, Chemistry and Natural Sciences (Springer Verlag,
Berlin, 1983)

2. V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, T.E.
Vadisanova, L. Schimansky-Geier, Nonlinear Dynamics of
Chaotic and Stochastic Systems (Springer Verlag, Berlin,
2003)

3. W. Horsthemke, R. Lefever, Noise-Inducted Transitions.
Theory and Applications in Physics, Chemistry, and
Biology (Springer Verlag, Berlin, 1984)

4. Noise in Nonlinear Dynamical Systems, edited by F.
Moss, P.V.E. McClintock (Cambridge University Press,
Cambridge, 1990)

5. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev.
Mod. Phys. 70, 223 (1998)

6. P. Reimann, Phys. Rep. 361, 57 (2002)
7. S. Kabashima, T. Kawakubo, Phys. Lett. A 70, 375 (1979)
8. J.M. Sancho, M. San Miguel, H. Yamazaki, T. Kawakubo,

Physica A 116, 560 (1982)
9. K. Kitahara, W. Horsthemke, R. Lefever, Phys. Lett. A

70, 377 (1979)
10. C. Van den Broeck, J. Stat. Phys. 31, 467 (1983)
11. C. Schmitt, B. Dybiec, P. Hänggi, C. Bechinger, Europhys.

Lett. 74, 937 (2006)
12. I. Bena, C. Van den Broeck, R. Kawai, K. Lindenberg,

Phys. Rev. E 68, 041111 (2003)

13. I. Bena, Int. J. Mod. Phys. B 20, 2825 (2006)
14. L. Schimansky-Geier, U. Erdmann, N. Komin, Physica A

351, 51 (2005)
15. R. Mankin, A. Sauga, A. Ainsaar, A. Haljas, K. Paunel,

Phys. Rev. E 69, 061106 (2004)
16. Ch.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318

(1992)
17. J. Kula, T. Czernik, J. �Luczka, Phys. Rev. Lett. 80, 1377

(1998)
18. J. Kula, M. Kostur, J. �Luczka, Chem. Phys. 235, 27 (1998)
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